Demyelination and axonal preservation in a transgenic mouse model of Pelizaeus-Merzbacher disease

نویسندگان

  • Julia M Edgar
  • Mailis C McCulloch
  • Paul Montague
  • Angus M Brown
  • Sebastian Thilemann
  • Laura Pratola
  • Fredrik I Gruenenfelder
  • Ian R Griffiths
  • Klaus-Armin Nave
چکیده

It is widely thought that demyelination contributes to the degeneration of axons and, in combination with acute inflammatory injury, is responsible for progressive axonal loss and persistent clinical disability in inflammatory demyelinating disease. In this study we sought to characterize the relationship between demyelination, inflammation and axonal transport changes using a Plp1-transgenic mouse model of Pelizaeus-Merzbacher disease. In the optic pathway of this non-immune mediated model of demyelination, myelin loss progresses from the optic nerve head towards the brain, over a period of months. Axonal transport is functionally perturbed at sites associated with local inflammation and 'damaged' myelin. Surprisingly, where demyelination is complete, naked axons appear well preserved despite a significant reduction of axonal transport. Our results suggest that neuroinflammation and/or oligodendrocyte dysfunction are more deleterious for axonal health than demyelination per se, at least in the short term.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased Plp1 gene expression leads to massive microglial cell activation and inflammation throughout the brain

PMD (Pelizaeus-Merzbacher disease) is a rare neurodegenerative disorder that impairs motor and cognitive functions and is associated with a shortened lifespan. The cause of PMD is mutations of the PLP1 [proteolipid protein 1 gene (human)] gene. Transgenic mice with increased Plp1 [proteolipid protein 1 gene (non-human)] copy number model most aspects of PMD patients with duplications. Hypomyeli...

متن کامل

Application of Diffusion Tensor Imaging to Better Understanding Pathogenesis of the Pelizaeus-Merzbacher Disease

Introduction: Diffusion tensor imaging (DTI) is a non-invasive exam that can characterize the microstructural properties of the brain white matter through the molecular diffusion processes. The application of DTI to the central nervous system (CNS) can accurately discriminates among different CNS disease pathologies by evaluating the microstructural architecture of the axonal fibers and myelin ...

متن کامل

Curcumin therapy in a Plp1 transgenic mouse model of Pelizaeus-Merzbacher disease

OBJECTIVE Pelizaeus-Merzbacher disease (PMD) is a progressive and lethal leukodystrophy caused by mutations affecting the proteolipid protein (PLP1) gene. The most common cause of PMD is a duplication of PLP1 and at present there is no curative therapy available. METHODS By using transgenic mice carrying additional copies of Plp1, we investigated whether curcumin diet ameliorates PMD symptoms...

متن کامل

Transgenic replacement of Cx32 in gap junction-deficient oligodendrocytes rescues the phenotype of a hypomyelinating leukodystrophy model.

Oligodendrocytes are coupled by gap junctions (GJs) formed mainly by connexin47 (Cx47) and Cx32. Recessive GJC2/Cx47 mutations cause Pelizaeus-Merzbacher-like disease, a hypomyelinating leukodystrophy, while GJB1/Cx32 mutations cause neuropathy and chronic or acute-transient encephalopathy syndromes. Cx32/Cx47 double knockout (Cx32/Cx47dKO) mice develop severe CNS demyelination beginning at 1 m...

متن کامل

Pelizaeus-Merzbacher disease.

Pelizaeus-Merzbacher disease (PMD) can now be defined as an X-linked recessive leukodystrophy that is caused by a mutation in the proteolipid protein (PLP) gene on chromosome Xq22. The most common mutation is gene duplication followed in frequency by missense mutations, insertions, and deletions. The clinical spectrum ranges from severe neonatal cases to relatively benign adult forms and X-link...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010